Codex Prompt Runbook: MVP Reference Checker (Livestream Build)
Version 1.0 • 01 January 2026 • Windows + WSL + VS Code
This runbook gives you a step by step set of prompts to use with Codex in VS Code to build an MVP reference checker. Each step has: (1) the prompt to paste into Codex, (2) what to test, and (3) pass criteria.
What the MVP will do
Accept a .docx or .txt upload (MVP scope).
Extract in text citations (basic APA style patterns for a first cut).
Extract a reference list from the end of the document.
Cross check: citations missing from the reference list, and references not used in text.
Generate a clean report in the browser and as a downloadable JSON file.
What the MVP will not do (yet)
No PDF parsing in the MVP (add later).
No full APA formatting validation (paid tier later).
No semantic claim checking (paid tier later).
No Snowflake hosting in the MVP. Build local first, then deploy once the core logic is stable.
Project structure you will build
reference-checker/
 app/
 __init__.py
 main.py
 parsers.py
 extractors.py
 matcher.py
 models.py
 templates/
 index.html
 report.html
 static/
 app.js
 styles.css
 tests/
 test_extractors.py
 test_matcher.py
 sample_docs/
 sample_apa.docx
 sample_apa.txt
 .env.example
 pyproject.toml
 README.md
Ground rules for using Codex during the build
Ask Codex to propose a short plan first, then implement.
Keep steps small. Commit after each milestone.
Ask Codex to run tests and show results in the terminal.
Review diffs in Source Control before committing.
OpenAI documents how Codex works in IDEs and how approvals operate. See references at the end.
Step by step prompts
Paste each prompt into Codex, one step at a time. Do not paste all prompts in one go.
Step 1: Scaffold the FastAPI app
	Goal
	Create a minimal FastAPI server, HTML page, and a health route.

	Prompt to Codex
	We are building an MVP reference checker. Use Python + FastAPI. Create the project structure shown in the runbook. Add app/main.py with a FastAPI app, a GET /health route returning {'ok': true}, and a GET / route that renders an upload page (Jinja2 template). Add minimal templates/index.html and static/styles.css. Add a pyproject.toml using uv (or pip) friendly dependencies. After changes, run the server and curl /health. Show the command output.

	You do (terminal)
	python3 -m venv .venv
source .venv/bin/activate
pip install -U pip
pip install -r requirements.txt (or use uv, based on what Codex created)
uvicorn app.main:app --reload --port 8000

	Test
	Open http://localhost:8000 and confirm you see the upload page. Run curl http://localhost:8000/health.

	Pass criteria
	Page loads, /health returns ok.

Step 2: Add file upload endpoint
	Goal
	Upload a .docx or .txt and get raw extracted text back (for debugging).

	Prompt to Codex
	Add POST /upload that accepts a file form field named 'file'. Support .txt and .docx only. Reject other types with a clear error message. For .txt, decode as utf-8 with errors='ignore'. For .docx, use python-docx to extract paragraph text joined with newlines. Return a JSON response with keys: filename, char_count, and a text_preview of the first 500 characters. Add basic error handling and unit tests for file type validation.

	You do (terminal)
	pytest -q

	Test
	Upload a small .txt and a small .docx from the browser and check the JSON response.

	Pass criteria
	Both file types work. Unsupported types return a 400 with a message.

Step 3: Implement citation extraction (basic APA patterns)
	Goal
	Extract a set of citation keys from the text.

	Prompt to Codex
	Create app/extractors.py with functions to extract APA style in text citations. First cut patterns: parenthetical like (Surname, 2020) and narrative like Surname (2020). Also support (Surname & Surname, 2020) and (Surname et al., 2020). Normalise each citation to a key like 'surname_2020' or 'surname_et_al_2020'. Return a list of unique keys and also include the raw matched strings. Add unit tests with at least 10 cases, including '2020a' style year suffixes.

	You do (terminal)
	pytest -q

	Test
	Run a small script or a test that prints extracted citations from sample text.

	Pass criteria
	Tests pass and extraction returns stable keys.

Step 4: Extract the reference list from the end of the document
	Goal
	Identify references section and split into reference entries.

	Prompt to Codex
	Create a function extract_reference_entries(text) in app/extractors.py. Heuristic: find the last occurrence of a heading line that equals 'References' or 'Reference list' (case insensitive). Everything after that is the reference section. Split into entries by blank lines, or by lines that start with a capital letter and contain a year in parentheses. Return a list of entries and also attempt to extract a key for each entry using first author surname + year. Add tests using a sample reference list.

	You do (terminal)
	pytest -q

	Test
	Feed sample text containing a References section and print parsed entries.

	Pass criteria
	Reference entries are separated and keys look sensible.

Step 5: Match citations to references and produce a report model
	Goal
	Produce a clean report: missing references, unused references, summary stats.

	Prompt to Codex
	Create app/matcher.py with a function build_report(citations, references). Inputs: citations is a list of citation keys, references is a list of reference keys. Output: a dict with fields: total_citations, total_references, missing_in_references, unused_in_text, and also include 'citation_examples' and 'reference_examples' arrays for display. Add unit tests for matching logic.

	You do (terminal)
	pytest -q

	Test
	Run matching on sample data and inspect JSON.

	Pass criteria
	Report flags missing and unused correctly.

Step 6: Build the web report UI
	Goal
	Upload file, then show report in browser.

	Prompt to Codex
	Update the / route to show an upload form posting to /check. Add POST /check that runs: text extraction -> citation extraction -> reference extraction -> matching. Render templates/report.html showing summary counts and two lists: 'Missing in reference list' and 'Unused in text'. Also add a 'Download JSON' link that hits GET /report.json for the last run (store in memory for MVP). Add basic styling and a clear error page for unsupported files or missing References section.

	You do (terminal)
	uvicorn app.main:app --reload --port 8000

	Test
	Upload sample docs and confirm the report page matches expected lists.

	Pass criteria
	UI works, JSON download works, errors show human readable messages.

Step 7: Add sample documents for reliable demos
	Goal
	Have repeatable demo inputs for the livestream.

	Prompt to Codex
	Create sample_docs/sample_apa.txt containing at least 6 in text citations and a References section, with at least one missing reference and one unused reference. Also create a sample_docs/sample_apa.docx with similar content. Add a README section that tells users how to run the app and test with sample docs.

	You do (terminal)
	Open the sample files to confirm they contain the intended edge cases.

	Test
	Upload both sample files and confirm the report matches the intended failures.

	Pass criteria
	Demo is repeatable and produces non empty report lists.

Step 8: Add automated tests and a smoke test script
	Goal
	Have a quick check you can run live after any change.

	Prompt to Codex
	Add pytest tests for: (1) docx extraction, (2) citation extractor, (3) reference extractor, (4) matching. Add a scripts/smoke_test.sh that starts the server, calls /health, and then posts the sample txt to /upload and /check. Make it run in under 30 seconds. Show the commands and output.

	You do (terminal)
	pytest -q
bash scripts/smoke_test.sh

	Test
	Confirm smoke test exits with code 0.

	Pass criteria
	One command validates the whole MVP.

Step 9: Git commits and tags for the livestream
	Goal
	Make your build easy to follow and roll back.

	Prompt to Codex
	Suggest a commit plan for the steps completed so far and create git commits with short messages. After each commit, print git log --oneline --decorate -5. Do not push unless I ask.

	You do (terminal)
	git status
git add .
git commit -m "..."
git log --oneline --decorate -5

	Test
	Check the history reads like a story.

	Pass criteria
	You can reset to any earlier step quickly.

Livestream talk track ideas (short, practical)
Start by stating the MVP scope and what is intentionally out of scope.
When Codex is working, narrate your review process: you read diffs, you run tests, you keep steps small.
When a test fails, keep it: it is a teaching moment. Ask Codex to fix, then rerun tests.
Finish by showing the report on sample docs and the JSON download.
Confidentiality and safety notes
Do not upload real student work or unpublished papers during a public stream.
Use the sample_docs folder and synthetic examples only.
If you later add cloud storage, avoid storing raw documents by default. Store only derived metadata and reports.
Troubleshooting quick list
If uploads fail: confirm the form field name is 'file' and the endpoint expects it.
If docx parsing fails: confirm python-docx is installed and the file is a real .docx (not .doc).
If the report is empty: print extracted citations and extracted references in the terminal to see which side failed.
If Codex asks for many approvals: keep tasks smaller and ask for plan only first.
Next features (after MVP)
Add PDF parsing.
Add APA formatting validation using a proper citation parser or external service.
Add context checking: link claims to nearby citations (paid tier).
Add deployment: containerise and deploy to your chosen host once core parsing is stable.
References (APA)
FastAPI. (n.d.). Request files. https://fastapi.tiangolo.com/tutorial/request-files/
FastAPI. (n.d.). UploadFile class reference. https://fastapi.tiangolo.com/reference/uploadfile/
OpenAI. (n.d.). Codex IDE extension. https://developers.openai.com/codex/ide/
OpenAI. (n.d.). Codex security. https://developers.openai.com/codex/security/
Williamson, M. (n.d.). python-mammoth (GitHub repository). https://github.com/mwilliamson/python-mammoth
GitHub. (2021, June 30). Token authentication requirements for Git operations. https://github.blog/security/application-security/token-authentication-requirements-for-git-operations/
